Pathogenesis of Immune-Mediated Glomerulonephritis

Keywords: Antibody-Mediated Glomerular Injury, Humoral and Cellular Component, Circulating Inflammatory Cells, Intrinsic Glomerular Cells Injury, Permeability Factors

Abstract

Most forms of glomerulonephritis (GN) are characterized by a pathogenic immune response, which is mediated by the action of various immune system elements, both innate and adaptive. What is clear is that the immunopathogenesis of GN is very broad and complex. Deposits of immune complexes in the glomeruli activate complement and glomerular injury due to the involvement of circulating inflammatory cells and glomerular intrinsic cells, ultimately resulting in a wide variety of clinical manifestations, which depend in part on the location and immunopathology of the patient, including genetic and environmental factors, from asymptomatic to rapidly progressive GN. Most of the treatment strategies for GN are non-specific, consisting of corticosteroids and cytotoxic agents. Thus, an advanced understanding of GN immunopathogenesis may offer many opportunities for future therapeutic interventions on an individual basis. To further facilitate understanding of the pathogenesis of GN, the author also includes a graphical abstract.

Downloads

Download data is not yet available.

References

Russo GE, Musto TG, Glomerulonephritis MT. Pathogenetic Mechanisms and Therapeutic Options: An Overview. J Nephrol Ther. 2014;4(4):1–9. doi:10.4172/2161-0959.1000175

Couser WG. Basic and translational concepts of immune-mediated glomerular diseases. J Am Hear Assoc [Internet]. 2012;23(3):381–99. Available from: http://dx.doi.org/10.1681/asn.2011030304doi:10.1681/asn.2011030304

Anders HJ, Fogo AB. Immunopathology of lupus nephritis. Semin Immunopathol [Internet]. 2014;36(4):443–59. Available from: http://dx.doi.org/10.1007/s00281-013-0413-5doi:10.1007/s00281-013-0413-5

Kashtan C. Autotopes and allotopes. J Am Soc Nephrol [Internet]. 2005;16(12):3455–7. Available from: http://dx.doi.org/10.1681/asn.2005090943doi:10.1681/asn.2005090943

Stanescu HC, Arcos-Burgos M, Medlar A, Bockenhauer D, Kottgen A, Dragomirescu L, et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. New Engl J Med [Internet]. 2011;364(7):616–26. Available from: http://dx.doi.org/10.1056/nejmoa1009742doi:10.1056/nejmoa1009742

Beerman I, Novak J, Wyatt RJ, Julian BA, Gharavi AG. The genetics of IgA nephropathy. Nat Clin Pr Nephrol [Internet]. 2007;3(6):325–38. Available from: http://dx.doi.org/10.1038/ncpneph0492doi:10.1038/ncpneph0492

Berg JG van den, Weening JJ. Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci. 2004;107(2):125–136. doi:10.1042/cs20040095

Couser WG, Baker PJ, Adler S. Complement and the direct mediation of immune glomerular injury: a new perspective. Kidney Int [Internet]. 1985;28(6):879–90. Available from: http://dx.doi.org/10.1038/ki.1985.214doi:10.1038/ki.1985.214

Bonegio RGB, Salant DJ. Mechanisms of immune injury of the glomerulus [Internet]. 2023 [cited 2023 Jun 14]. Available from: https://medilib.ir/uptodate/show/3068

Sol M, Kamps JAAM, van den Born J, van den Heuvel MC, van der Vlag J, Krenning G, et al. Glomerular endothelial cells as instigators of glomerular sclerotic diseases. Front Pharmacol [Internet]. 2020 Oct 6;11:573557. Available from: https://pubmed.ncbi.nlm.nih.gov/33123011doi:10.3389/fphar.2020.573557

Salmon AHJ, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol [Internet]. 2012;226(4):562–74. Available from: http://dx.doi.org/10.1002/path.3964doi:10.1002/path.3964

Cirillo L, De Chiara L, Innocenti S, Errichiello C, Romagnani P, Becherucci F. Chronic kidney disease in children: an update. Clin Kidney J [Internet]. 2023 Apr 24;16(10):1600–11. Available from: https://pubmed.ncbi.nlm.nih.gov/37779846doi:10.1093/ckj/sfad097

Hall JE. Guyton and Hall Textbook of Medical Physiology Elsevier eBook on VitalSource, 13th Edition. elsivier Health Sciences; 2020.

Tecklenborg J, Clayton D, Siebert S. The role of the immune system in kidney disease. Clin Exp Immunol. 2018;192(2):142–150. doi:10.1111/cei.13119

Hudson BG. The molecular basis of Goodpasture and Alport syndromes: beacons for the discovery of the collagen IV family. J Am Soc Nephrol. 2004;15(10):2514–2527. doi:10.1097/01.asn.0000141462.00630.76

Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG. Alport’s syndrome, goodpasture’s syndrome, and type IV collagen. N [Internet]. 2003;348(25):2543–56. Available from: http://dx.doi.org/10.1056/nejmra022296doi:10.1056/nejmra022296

Beck Jr LH, Bonegio RGB, Lambeau G, Beck DM, Powell DW, Cummins TD, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med [Internet]. 2009 Jul 2;361(1):11–21. Available from: https://pubmed.ncbi.nlm.nih.gov/19571279doi:10.1056/nejmoa0810457

Tomas NM, Jr LHB, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med. 2014;371(24):2277–2287. doi:10.1056/nejmoa1409354

Ronco P, Plaisier E, Debiec H. Advances in membranous nephropathy. J Clin Med [Internet]. 2021 Feb 5;10(4):607. Available from: https://pubmed.ncbi.nlm.nih.gov/33562791doi:10.3390/jcm10040607

Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell [Internet]. 1998;1(4):575–82. Available from: http://dx.doi.org/10.1016/s1097-2765(00)80057-xdoi:10.1016/s1097-2765(00)80057-x

Kalaaji M, Fenton KA, Mortensen ES, Olsen R, Sturfelt G, Alm P, et al. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int [Internet]. 2007;71(7):664–72. Available from: http://dx.doi.org/10.1038/sj.ki.5002133doi:10.1038/sj.ki.5002133

Tomana M, Novak J, Julian BA, Matousovic K, Konecny K, Mestecky J. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest [Internet]. 1999 Jul;104(1):73–81. Available from: https://pubmed.ncbi.nlm.nih.gov/10393701doi:10.1172/jci5535

Jennette JC, Falk RJ, Gasim AH. Pathogenesis of antineutrophil cytoplasmic autoantibody vasculitis. Curr Opin Nephrol Hypertens [Internet]. 2011 May;20(3):263–70. Available from: https://pubmed.ncbi.nlm.nih.gov/21422922doi:10.1097/mnh.0b013e3283456731

Gupta A, Quigg RJ. Glomerular diseases associated with hepatitis B and C. Adv Chronic Kidney Dis [Internet]. 2015;22(5):343–51. Available from: http://dx.doi.org/10.1053/j.ackd.2015.06.003doi:10.1053/j.ackd.2015.06.003

Cui Z, Zhao M hui, Segelmark M, Hellmark T. Natural autoantibodies to myeloperoxidase, proteinase 3, and the glomerular basement membrane are present in normal individuals. Kidney Int [Internet]. 2010;78(6):590–7. Available from: http://dx.doi.org/10.1038/ki.2010.198doi:10.1038/ki.2010.198

Linke A, Tiegs G, Neumann K. Pathogenic T-cell responses in immune-mediated glomerulonephritis. Cells
[Internet]. 2022 May 12;11(10):1625. Available from: https://pubmed.ncbi.nlm.nih.gov/35626662doi:10.3390/cells11101625

Polci R, Feriozzi S. [Immunotherapy mechanisms in glomerulonephritis]. G Ital Nefrol. 2011;28(6):612–21.
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol [Internet]. 2009/10/07. 2009 Dec;1(6):a001651–a001651. Available from: https://pubmed.ncbi.nlm.nih.gov/20457564doi:10.1101/cshperspect.a001651

Hénique C, Papista C, Guyonnet L, Lenoir O, Tharaux PL. Update on crescentic glomerulonephritis. Semin Immunopathol [Internet]. 2014;36(4):479–90. Available from: http://dx.doi.org/10.1007/s00281-014-0435-7doi:10.1007/s00281-014-0435-7

Mayadas TN, Rosetti F, Ernandez T, Sethi S. Neutrophils: game changers in glomerulonephritis? Trends Mol Med [Internet]. 2010/07/29. 2010 Aug;16(8):368–78. Available from: https://pubmed.ncbi.nlm.nih.gov/20667782doi:10.1016/j.molmed.2010.06.002

Kitching AR, Hutton HL. The players: cells involved in glomerular disease. Clin J Am Soc Nephrol. 2016;11(9):1664–1674. doi:10.2215/cjn.13791215

Nishi H, Furuhashi K, Cullere X, Saggu G, Miller MJ, Chen Y, et al. Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases. J Clin Invest [Internet]. 2017/09/11. 2017 Oct 2;127(10):3810–26. Available from: https://pubmed.ncbi.nlm.nih.gov/28891817doi:10.1172/jci94039

Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med [Internet]. 2009 Jun;15(6):623–5. Available from: https://pubmed.ncbi.nlm.nih.gov/19448636doi:10.1038/nm.1959

Kurts C, Panzer U, Anders HJ, Rees AJ. The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol [Internet]. 2013;13(10):738–53. Available from: http://dx.doi.org/10.1038/nri3523doi:10.1038/nri3523

Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature [Internet]. 2013 Apr 25;496:445–55. Available from: https://pubmed.ncbi.nlm.nih.gov/23619691doi:10.1038/nature12034

Duffield JS. Macrophages and immunologic inflammation of the kidney. Semin Nephrol [Internet]. 2010 May;30(3):234–54. Available from: https://pubmed.ncbi.nlm.nih.gov/20620669doi:10.1016/j.semnephrol.2010.03.003

Eardley KS, Cockwell P. Macrophages and progressive tubulointerstitial disease. Kidney Int. 2005;68(2):437–455. doi:10.1111/j.1523-1755.2005.00422.x.

Rastaldi MP, Ferrario F, Crippa A, Dell’antonio G, Casartelli D, Grillo C, et al. Glomerular monocyte-macrophage features in ANCA-positive renal vasculitis and cryoglobulinemic nephritis. J Am Soc Nephrol [Internet]. 2000;11(11):2036–43. Available from: http://dx.doi.org/10.1681/asn.v11112036doi:10.1681/asn.v11112036

Moll S, Angeletti A, Scapozza L, Cavalli A, Ghiggeri GM, Prunotto M. Glomerular macrophages in human auto- and allo-immune nephritis. Cells. 2021;10(3):603. doi:10.3390/cells10030603

Segerer S, Cui Y, Hudkins KL, Goodpaster T, Eitner F, Mack M, et al. Expression of the chemokine monocyte chemoattractant protein-1 and its receptor chemokine receptor 2 in human crescentic glomerulonephritis. J Am Soc Nephrol [Internet]. 2000;11(12):2231–42. Available from: http://dx.doi.org/10.1681/asn.v11122231doi:10.1681/asn.v11122231

Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, et al. Macrophage migration inhibitory factor mediates proliferative GN via CD74. J Am Soc Nephrol [Internet]. 2015/10/09. 2016 Jun;27(6):1650–64. Available from: https://pubmed.ncbi.nlm.nih.gov/26453615doi:10.1681/asn.2015020149

Ferrario F, Napodano P, Rastaldi MP, D’Amico G. Capillaritis in IgA nephropathy. Contrib Nephrol [Internet]. 1995;111:8–12. Available from: http://dx.doi.org/10.1159/000423869doi:10.1159/000423869

D’Amico G, Napodano P, Ferrario F, Rastaldi MP, Arrigo G. Idiopathic iga nephropathy with segmental necrotizing lesions of the capillary wall. Kidney Int. 2001;59(2):682–692. doi:10.1046/j.1523-1755.2001.059002682.x

Bolton WK, Benton FR, Lobo PI. Requirement of functional T-cells in the production of autoimmune glomerulotubular nephropathy in mice. Clin Exp Immunol. 1978;33(3):474–477.

Wofsy D, Ledbetter JA, Hendler PL, Seaman WE. Treatment of murine lupus with monoclonal anti-T cell antibody. J Immunol [Internet]. 1985;134(2):852–7. Available from: http://dx.doi.org/10.4049/jimmunol.134.2.852doi:10.4049/jimmunol.134.2.852

Ruth AJ, Kitching AR, Kwan RYQ, Odobasic D, Ooi JDK, Timoshanko JR, et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Hear Assoc [Internet]. 2006;17(7):1940–9. Available from: http://dx.doi.org/10.1681/asn.2006020108doi:10.1681/asn.2006020108

Gan PY, Holdsworth SR, Kitching AR, Ooi JD. Myeloperoxidase (MPO)-specific CD4+ T cells contribute to MPO-anti-neutrophil cytoplasmic antibody (ANCA) associated glomerulonephritis. Cell Immunol [Internet]. 2013;282(1):21–7. Available from: http://dx.doi.org/10.1016/j.cellimm.2013.04.007doi:10.1016/j.cellimm.2013.04.007

Kurts C, Heymann F, Lukacs-Kornek V, Boor P, Floege J. Role of T cells and dendritic cells in glomerular immunopathology. Semin Immunol [Internet]. 2007;29(4):317–35. Available from: http://dx.doi.org/10.1007/s00281-007-0096-xdoi:10.1007/s00281-007-0096-x

Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M. A glomerular permeability factor produced by human T cell hybridomas. Kidney In [Internet]. 1991;40(3):453–60. Available from: http://dx.doi.org/10.1038/ki.1991.232doi:10.1038/ki.1991.232

Azadegan-Dehkordi F, Bagheri N, Shirzad H, Rafieian-Kopaei M. The role of Th1 and Th17 cells in glomerulonephritis. J Nephropathol. 2015 Apr;4(2):32–7. doi:10.12860/jnp.2015.07

Gan PY, Steinmetz OM, Tan DSY, O’Sullivan KM, Ooi JD, Iwakura Y, et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol [Internet]. 2010/03/18. 2010 Jun;21(6):925–31. Available from: https://pubmed.ncbi.nlm.nih.gov/20299361doi:10.1681/asn.2009070763

Venkatadri R, Sabapathy V, Dogan M, Sharma R. Targeting regulatory T cells for therapy of lupus nephritis. Front Pharmacol [Internet]. 2022 Jan 6;12:806612. Available from: https://pubmed.ncbi.nlm.nih.gov/35069220doi:10.3389/fphar.2021.806612

Sakai R, Ito M, Komai K, Iizuka-Koga M, Matsuo K, Nakayama T, et al. Kidney GATA3(+) regulatory T cells play roles in the convalescence stage after antibody-mediated renal injury. Cell Mol Immunol [Internet]. 2020/09/11. 2021 May;18(5):1249–61. Available from: https://pubmed.ncbi.nlm.nih.gov/32917984doi:10.1038/s41423-020-00547-x

Herrnstadt GR, Steinmetz OM. The role of Treg subtypes in glomerulonephritis. Cell Tissue Res [Internet]. 2020/12/14. 2021 Aug;385(2):293–304. Available from: https://pubmed.ncbi.nlm.nih.gov/33315
130doi:10.1007/s00441-020-03359-55.
Alikhan MA, Huynh M, Kitching AR, Ooi JD. Regulatory T cells in renal disease. Clin Transl Immunol [Internet]. 2018 Jan 30;7(1):e1004–e1004. Available from: https://pubmed.ncbi.nlm.nih.gov/29484182doi:10.1002/cti2.1004

Doglio M, Alexander T, Del Papa N, Snowden JA, Greco R. New insights in systemic lupus erythematosus: From regulatory T cells to CAR-T-cell strategies. J Allergy Clin Immunol [Internet]. 2022;150(6):1289–301. Available from: http://dx.doi.org/10.1016/j.jaci.2022.08.003doi:10.1016/j.jaci.2022.08.003

Saleem MA. One hundred ways to kill a podocyte. Nephrol Dial TransplantDialysis Transplant [Internet]. 2015;30(8):1266–71. Available from: http://dx.doi.org/10.1093/ndt/gfu363doi:10.1093/ndt/gfu363

Rabelink TJ, de Boer HC, van Zonneveld AJ. Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat Rev Nephrol Rev Nephrol [Internet]. 2010;6(7):404–14. Available from: http://dx.doi.org/10.1038/nrneph.2010.65doi:10.1038/nrneph.2010.65

Kang DH, Kanellis J, Hugo C, Truong L, Anderson S, Kerjaschki D, et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol [Internet]. 2002;13(3):806–16. Available from: http://dx.doi.org/10.1681/asn.v133806doi:10.1681/asn.v133806

Segal MS, Baylis C, Johnson RJ. Endothelial health and diversity in the kidney. J Am Soc Nephrol [Internet]. 2006 Feb;17(2):323–4. Available from: https://pubmed.ncbi.nlm.nih.gov/16434502doi:10.1681/asn.2005121296

Eymael J, Sharma S, Loeven MA, Wetzels JF, Mooren F, Florquin S, et al. CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal segmental glomerulosclerosis. Kidney Int [Internet]. 2018;93(3):626–42. Available from: http://dx.doi.org/10.1016/j.kint.2017.09.020doi:10.1016/j.kint.2017.09.020

Abboud HE. Mesangial cell biology. Exp Cell Res [Internet]. 2012;318(9):979–85. Available from: http://dx.doi.org/10.1016/j.yexcr.2012.02.025doi:10.1016/j.yexcr.2012.02.025

Schlöndorff D, Banas B. The mesangial cell revisited: no cell is an island. J Am Soc Nephrol. 2009 Jun;20(6):1179–87. doi:10.1681/asn.2008050549

Jefferson JA, Nelson PJ, Najafian B, Shankland SJ. Podocyte disorders: core curriculum 2011. Am J Kidney Dis [Internet]. 2011/08/24. 2011 Oct;58(4):666–77. Available from: https://pubmed.ncbi.nlm.nih.gov/21868143doi:10.1053/j.ajkd.2011.05.032

Smeets B, Angelotti ML, Rizzo P, Dijkman H, Lazzeri E, Mooren F, et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J Am Soc Nephrol [Internet]. 2009/10/29. 2009 Dec;20(12):2593–603. Available from: https://pubmed.ncbi.nlm.nih.gov/19875807doi:10.1681/asn.2009020132

Ryu M, Migliorini A, Miosge N, Gross O, Shankland S, Brinkkoetter PT, et al. Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non‐inflammatory glomerular injury. J Pathol [Internet]. 2012;228(4):482–94. Available from: http://dx.doi.org/10.1002/path.4046doi:10.1002/path.4046

Ohse T, Pippin JW, Chang AM, Krofft RD, Miner JH, Vaughan MR, et al. The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney Int [Internet]. 2009/10/21. 2009 Dec;76(12):1225–38. Available from: https://pubmed.ncbi.nlm.nih.gov/19847153doi:10.1038/ki.2009.386

Zhou W, Hildebrandt F. Inducible podocyte injury and proteinuria in transgenic zebrafish. J Am Soc Nephrol [Internet]. 2012/03/22. 2012 Jun;23(6):1039–47. Available from: https://pubmed.ncbi.nlm.nih.gov/22440901doi:10.1681/asn.2011080776

Zhang J, Hansen KM, Pippin JW, Chang AM, Taniguchi Y, Krofft RD, et al. De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am J Physiol Ren Physiol [Internet]. 2011/11/30. 2012 Mar 1;302(5):F571–80. Available from: https://pubmed.ncbi.nlm.nih.gov/22129965doi:10.1152/ajprenal.00516.2011

Shimizu M, Kondo S, Urushihara M, Takamatsu M, Kanemoto K, Nagata M, et al. Role of integrin-linked kinase in epithelial–mesenchymal transition in crescent formation of experimental glomerulonephritis. Nephrol Dial Transpl [Internet]. 2006;21(9):2380–90. Available from: http://dx.doi.org/10.1093/ndt/gfl243doi:10.1093/ndt/gfl243

Arif E, Kumari B, Wagner MC, Zhou W, Holzman LB, Nihalani D. Myo1c is an unconventional myosin required for zebrafish glomerular developement. Kidney Int. 2013;84(6):1154–1165. doi:10.1038/ki.2013.201

Moeller MJ, Soofi A, Hartmann I, Le Hir M, Wiggins R, Kriz W, et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J Am Soc Nephrol [Internet]. 2004;15(1):61–7. Available from: http://dx.doi.org/10.1097/01.asn.0000102468.37809.c6doi:10.1097/01.asn.0000102468.37809.c6

Thorner PS, Ho M, Eremina V, Sado Y, Quaggin S. Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol [Internet]. 2008/01/16. 2008 Mar;19(3):495–502. Available from: https://pubmed.ncbi.nlm.nih.gov/18199804doi:10.1681/asn.2006101115

Pace JA, Bronstein R, Guo Y, Yang Y, Estrada CC, Gujarati N, et al. Podocyte-specific KLF4 is required to maintain parietal epithelial cell quiescence in the kidney. SciAdv [Internet]. 2021/09/03. 2021 Sep 3;7(36):eabg6600–eabg6600. Available from: https://pubmed.ncbi.nlm.nih.gov/34516901doi:10.1126/sciadv.abg6600

Estrada CC, Paladugu P, Guo Y, Pace J, Revelo MP, Salant DJ, et al. Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation. JCI Insight [Internet]. 2018 Jun 21;3(12):e98214. Available from: https://pubmed.ncbi.nlm.nih.gov/29925693doi:10.1172/jci.insight.98214

Bronstein R, Pace J, Gowthaman Y, Salant DJ, Mallipattu SK. Podocyte-parietal epithelial cell interdependence in glomerular development and disease. J Am Soc Nephrol [Internet]. 2023/02/16. 2023 May 1;34(5):737–50. Available from: https://pubmed.ncbi.nlm.nih.gov/36800545doi:10.1681/asn.0000000000000104

Kriz W, Hähnel B, Hosser H, Rösener S, Waldherr R. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front Endocrinol [Internet]. 2014 Dec 12;5:207. Available from: https://pubmed.ncbi.nlm.nih.gov/25566184doi:10.3389/fendo.2014.00207

Kriz W, Shirato I, Nagata M, LeHir M, Lemley K V. The podocyte’s response to stress: the enigma of foot process effacement. Am J Physiol Ren Physiol [Internet]. 2013;304(4):F333–47. Available from: http://dx.doi.org/10.1152/ajprenal.00478.2012doi:10.1152/ajprenal.00478.2012

Raza A, Aggarwal S. Membranous Glomerulonephritis (Archived). In Treasure Island (FL); 2024.

Shankland SJ, Smeets B, Pippin JW, Moeller MJ. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol [Internet]. 2014;10(3):158–73. Available from: http://dx.doi.org/10.1038/nrneph.2014.1doi:10.1038/nrneph.2014.1

Vivarelli M, Emma F, Pellé T, Gerken C, Pedicelli S, Diomedi-Camassei F, et al. Genetic homogeneity but IgG subclass–dependent clinical variability of alloimmune membranous nephropathy
with anti-neutral endopeptidase antibodies. Kidney Int [Internet]. 2015;87(3):602–9. Available from: http://dx.doi.org/10.1038/ki.2014.381doi:10.1038/ki.2014.381

Nangaku M, Couser WG. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol [Internet]. 2005;9(3):183–91. Available from: http://dx.doi.org/10.1007/s10157-005-0357-8doi:10.1007/s10157-005-0357-8

Couser WG, Salant DJ. In situ immune complex formation and glomerular injury. Kidney Int [Internet]. 1980;17(1):1–13. Available from: http://dx.doi.org/10.1038/ki.1980.1doi:10.1038/ki.1980.1

Jia X yu, Cui Z, Yang R, Hu S yi, Zhao M hui. Antibodies against linear epitopes on the Goodpasture autoantigen and kidney injury. Clin J Am Soc Nephrol [Internet]. 2012/03/29. 2012 Jun;7(6):926–33. Available from: https://pubmed.ncbi.nlm.nih.gov/22461538doi:10.2215/cjn.09930911

Roth AJ, Ooi JD, Hess JJ, van Timmeren MM, Berg EA, Poulton CE, et al. Epitope specificity determines pathogenicity and detectability in ANCA-associated vasculitis. J Clin Invest [Internet]. 2013/03/15. 2013 Apr;123(4):1773–83. Available from: https://pubmed.ncbi.nlm.nih.gov/23549081doi:10.1172/jci65292

Land J, Rutgers A, Kallenberg CGM. Anti-neutrophil cytoplasmic autoantibody pathogenicity revisited: pathogenic versus non-pathogenic anti-neutrophil cytoplasmic autoantibody. Nephrol Dial Transpl [Internet]. 2014;29(4):739–45. Available from: http://dx.doi.org/10.1093/ndt/gft416doi:10.1093/ndt/gft416

Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum. 2013;65(1):1–11. doi:10.1002/art.37715

Chen YX, Chen XN. Antineutrophil cytoplasmic antibodies-associated glomerulonephritis: From bench to bedside. Chronic Dis Transl Med [Internet]. 2018 Aug 16;4(3):187–91. Available from: https://pubmed.ncbi.nlm.nih.gov/30276365doi:10.1016/j.cdtm.2018.05.004

Cornec D, Cornec-Le GE, Fervenza FC. ANCA-associated vasculitis - clinical utility of using ANCA specificity to classify patients. Nat Rev Rheumatol. 2016;12(10):879–890. doi:10.1038/nrrheum.2016.123

Chen YX, Xu J, Pan XX, Shen PY, Li X, Ren H, et al. Histopathological classification and renal outcome in patients with antineutrophil cytoplasmic antibodies-associated renal vasculitis: a study of 186 patients and metaanalysis. J Rheumatol [Internet]. 2016;44(3):304–13. Available from: http://dx.doi.org/10.3899/jrheum.160866doi:10.3899/jrheum.160866

Franssen CFM, Stegeman CA, Kallenberg CGM, Gans ROB, De Jong PE, Hoorntje SJ, et al. Antiproteinase 3- and antimyeloperoxidase-associated vasculitis. Kidney Int [Internet]. 2000;57(6):2195–206. Available from: http://dx.doi.org/10.1046/j.1523-1755.2000.00080.xdoi:10.1046/j.1523-1755.2000.00080.x

Erez DL, Meyers KE, Sullivan KE. C3 nephritic factors: a changing landscape. J Allergy Clin Immunol. 2017;140(1):57–9. doi:10.1016/j.jaci.2017.02.018

Lionaki S, Gakiopoulou H, Boletis JN. Understanding the complement‐mediated glomerular diseases: focus on membranoproliferative glomerulonephritis and C3 glomerulopathies. APMIS [Internet]. 2016;124(9):725–35. Available from: http://dx.doi.org/10.1111/apm.12566doi:10.1111/apm.12566

Riedl M, Thorner P, Licht C. C3 glomerulopathy. Pediatr Nephrol. 2017;32(1):43–57. doi:10.1007/s00467-015-3310-4

Bomback AS, Appel GB. Pathogenesis of the C3 glomerulopathies and reclassification of MPGN. Nat Rev Nephrol. 2012;8(11):634–42. doi:10.1038/nrneph.2012.213

Kopel T, Salant DJ. C3 glomerulopathies: Dense deposit disease and C3 glomerulonephritis [Internet]. 2023 [cited 2023 Jun 14]. Available from: https://medilib.ir/uptodate/show/3090

Niepolski L, Czekała A, Seget-Dubaniewicz M, Frydrychowicz M, Talarska-Markiewicz P, Kowalska A, et al. Diagnostic problems in C3 glomerulopathy. Biomedicines. 2023 Apr 5;11(4):1101. doi:10.3390/biomedicines11041101

Kemper MJ, Wolf G, Müller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med [Internet]. 2001;344(5):386–7. Available from: http://dx.doi.org/10.1056/nejm200102013440517doi:10.1056/nejm200102013440517

Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N Engl J Med [Internet]. 2012;366(17):1648–9. Available from: http://dx.doi.org/10.1056/nejmc1202500doi:10.1056/nejmc1202500

McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol [Internet]. 2010;5(11):2115–21. Available from: http://dx.doi.org/10.2215/cjn.03800609doi:10.2215/cjn.03800609

Kitchlu A, McArthur E, Amir E, Booth CM, Sutradhar R, Majeed H, et al. Acute kidney injury in patients receiving systemic treatment for cancer: A population-based cohort study. J Natl Cancer Inst. 2019 Jul;111(7):727–36. doi:10.1093/jnci/djy167

Gohh RY, Yango AF, Morrissey PE, Monaco AP, Gautam A, Sharma M, et al. Preemptive plasmapheresis and recurrence of FSGS in high-risk renal transplant recipients. Am J Transpl. 2005;5(12):2907–2912. doi:10.1111/j.1600-6143.2005.01112.x

Rea R, Smith C, Sandhu K, Kwan J, Tomson C. Successful transplant of a kidney with focal segmental glomerulosclerosis. Nephrol Dial Transpl [Internet]. 2001;16(2):416–7. Available from: http://dx.doi.org/10.1093/ndt/16.2.416doi:10.1093/ndt/16.2.416

Sharma M, Mccarthy ET, Savin VJ, Lianos EA. Nitric oxide preserves the glomerular protein permeability barrier by antagonizing superoxide. Kidney Int [Internet]. 2005;68(6):2735–44. Available from: http://dx.doi.org/10.1111/j.1523-1755.2005.00744.xdoi:10.1111/j.1523-1755.2005.00744.x

Bertelli R, Trivelli A, Magnasco A, Cioni M, Bodria M, Carrea A, et al. Failure of regulation results in an amplified oxidation burst by neutrophils in children with primary nephrotic syndrome. Clin Exp Immunol [Internet]. 2010/05/19. 2010 Jul 1;161(1):151–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20491793doi:10.1111/j.1365-2249.2010.04160.x

Ha TS. Circulating permeability factors in idiopathic nephrotic syndrome. Child Kid Dis [Internet]. 2019;23(1):7–21. Available from: http://dx.doi.org/10.3339/jkspn.2019.23.1.7doi:10.3339/jkspn.2019.23.1.7

Bakker WW, van Dael CML, Pierik LJWM, van Wijk JAE, Nauta J, Borghuis T, et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol Nephrol [Internet]. 2005;20(10):1410–5. Available from: http://dx.doi.org/10.1007/s00467-005-1936-3doi:10.1007/s00467-005-1936-3

Davin JC. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr Nephrol [Internet]. 2015/04/30. 2016 Feb;31(2):207–15. Available from: https://pubmed.ncbi.nlm.nih.gov/25925039doi:10.1007/s00467-015-3082-x

Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med [Internet]. 2010/12/12. 2011 Jan;17(1):117–22. Available from: https://pubmed.ncbi.nlm.nih.gov/21151138doi:10.1038/nm.2261

Chugh SS, Clement LC, Macé C. New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis [Internet]. 2011/10/05. 2012 Feb;59(2):284–92. Available from: https://pubmed.ncbi.nlm.nih.gov/21974967doi:10.1053/j.ajkd.2011.07.024

Moon C, Soria JC, Jang SJ, Lee J, Obaidul Hoque M, Sibony M, et al. Involvement of aquaporins in colorectal carcinogenesis. Oncogene. 2003 Oct;22(43):6699–703. doi:10.1038/sj.onc.1206762

Gill S, Maus M V, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev. 2016 May;30(3):157–67. doi:10.1016/j.blre.2015.10.003

Li JS, Chen X, Peng L, Wei SY, Zhao SL, Diao TT, et al. Angiopoietin-Like-4, a potential target of tacrolimus, predicts earlier podocyte injury in minimal change disease. PLoS One [Internet]. 2015 Sep 9;10(9):e0137049–e0137049. Available from: https://pubmed.ncbi.nlm.nih.gov/26352670doi:10.1371/journal.pone.0137049

Peng L, Ma J, Cui R, Chen X, Wei SY, Wei QJ, et al. The calcineurin inhibitor tacrolimus reduces proteinuria in membranous nephropathy accompanied by a decrease in angiopoietin-like-4. PLoS One [Internet]. 2014 Aug 28;9(8):e106164–e106164. Available from: https://pubmed.ncbi.nlm.nih.gov/25165975doi:10.1371/journal.pone.0106164

Cara-Fuentes G, Segarra A, Silva-Sanchez C, Wang H, Lanaspa MA, Johnson RJ, et al. Angiopoietin-like-4 and minimal change disease. PLoS One [Internet]. 2017 Apr 25;12(4):e0176198–e0176198. Available from: https://pubmed.ncbi.nlm.nih.gov/28441404doi:10.1371/journal.pone.0176198

Zhang X, Herr F, Vernochet A, Lorenzo HK, Beaudreuil S, Dürrbach A. CASK, the soluble glomerular permeability factor, is secreted by macrophages in patients with recurrent focal and segmental glomerulo-sclerosis. Front Immunol. 2020;11:875. doi:10.3389/fimmu.2020.00875

Beaudreuil S, Zhang X, Herr F, Harper F, Candelier JJ, Fan Y, et al. Circulating CASK is associated with recurrent focal segmental glomerulosclerosis after transplantation. PLoS One [Internet]. 2019 Jul 29;14(7):e0219353–e0219353. Available from: https://pubmed.ncbi.nlm.nih.gov/31356645doi:10.1371/journal.pone.0219353

Watts AJB, Keller KH, Lerner G, Rosales I, Collins AB, Sekulic M, et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J Am Soc Nephrol. 2022 Jan;33(1):238–52. doi:10.1681/asn.2021060794
Published
2024-12-24
How to Cite
1.
Samsu N. Pathogenesis of Immune-Mediated Glomerulonephritis. inakidney [Internet]. 24Dec.2024 [cited 7Feb.2025];1(3):46-9. Available from: https://inakidneyhypertension.co.id/index.php/inakidney/article/view/158